Hands-On Exercise 4

Author

KB

Updated on 10-Dec-2022

(First published on: 9-Dec-2022)

6 Calibrate Hedonic Pricing Model for Private Highrise Property with GWR Method

6.1 Overview

Geographically Weighted Regression (GWR) is a spatial statistical technique that takes non-stationary variables into consideration (e.g., climate; demographic factors; physical environment characteristics) and models the local relationships between these independent variables and an outcome of interest (also known as dependent variable). In this hands-on exercise, we will learn how to build hedonic pricing models by using GWR methods. The dependent variable is the resale prices of condominium in 2015. The independent variables are divided into either structural and locational.

6.2 The Data

Two data sets will be used in this model building exercise, they are:

  • URA Master Plan subzone boundary in shapefile format (i.e. MP14_SUBZONE_WEB_PL)

  • condo_resale_2015 in csv format (i.e. condo_resale_2015.csv)

6.3 Getting Started

Before we get started, it is important for us to install the necessary R packages and launch these R packages into R environment.

The R packages needed for this exercise are as follows:

  • R package for building OLS and performing diagnostics tests - olsrr

  • R package for calibrating geographical weighted family of models - GWmodel

  • R package for multivariate data visualisation and analysis - corrplot

  • Spatial data handling - sf

  • Attribute data handling - tidyverse, especially readr, ggplot2 and dplyr

  • Choropleth mapping - tmap

The code chunk below installs and launches these R packages into R environment.

pacman::p_load(olsrr, corrplot, ggpubr, sf, spdep, GWmodel, tmap, tidyverse, gtsummary)

6.4 A brief note on GWmodel

GWmodel package provides a collection of localised spatial statistical methods, namely: GW summary statistics, GW principal components analysis, GW discriminant analysis and various forms of GW regression; some of which are provided in basic and robust (outlier resistant) forms. Commonly, outputs or parameters of the GWmodel are mapped to provide a useful data exploratory tool, which can often precede (and direct) a more traditional or sophisticated statistical analysis.

6.5 Geospatial Data Wrangling

6.5.1 Import geospatial data

The geospatial data used in this hands-on exercise is called MP14_SUBZONE_WEB_PL. It is in ESRI shapefile format. The shapefile consists of URA Master Plan 2014’s planning subzone boundaries. Polygon features are used to represent these geographic boundaries. The GIS data is in svy21 projected coordinates systems.

The code chunk below is used to import MP_SUBZONE_WEB_PL shapefile by using st_read() of sf packages.

mpsz = st_read(dsn = "Hands-On_Ex4/data/geospatial", layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `C:\Cabbie-UK\ISSS624\Hands-On_Ex\Hands-On_Ex4\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

The report above shows that the R object used to contain the imported MP14_SUBZONE_WEB_PL shapefile is called mpsz and it is a simple feature object. The geometry type is multipolygon. it is also important to note that mpsz sf object does not have EPSG information.

6.5.2 Update CRS information

The code chunk below updates the newly imported mpsz with the appropriate ESPG code (i.e. 3414)

mpsz_svy21 <- st_transform(mpsz, 3414)

After transforming the projection metadata, you can varify the projection of the newly transformed mpsz_svy21 by using st_crs() of sf package.

The code chunk below will be used to varify the newly transformed mpsz_svy21.

st_crs(mpsz_svy21)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

Notice that the EPSG: is indicated as 3414 now.

Next, we reveal the extent of mpsz_svy21 by using st_bbox() of sf package. The st_bblox() bounds the sf object in a box

st_bbox(mpsz_svy21) #view extent
     xmin      ymin      xmax      ymax 
 2667.538 15748.721 56396.440 50256.334 

6.6 Aspatial Data Wrangling

6.6.1 Import the aspatial data

The condo_resale_2015 is in csv file format. The codes chunk below uses read_csv() function of readr package to import condo_resale_2015 into R as a tibble data frame called condo_resale.

condo_resale = read_csv("Hands-On_Ex4/data/aspatial/Condo_resale_2015.csv", show_col_types = FALSE)

After importing the data file into R, it is important for us to examine if the data file has been imported correctly.

The codes chunks below uses glimpse() to display the data structure of condo_resale data frame

glimpse(condo_resale)
Rows: 1,436
Columns: 23
$ LATITUDE             <dbl> 1.287145, 1.328698, 1.313727, 1.308563, 1.321437,…
$ LONGITUDE            <dbl> 103.7802, 103.8123, 103.7971, 103.8247, 103.9505,…
$ POSTCODE             <dbl> 118635, 288420, 267833, 258380, 467169, 466472, 3…
$ SELLING_PRICE        <dbl> 3000000, 3880000, 3325000, 4250000, 1400000, 1320…
$ AREA_SQM             <dbl> 309, 290, 248, 127, 145, 139, 218, 141, 165, 168,…
$ AGE                  <dbl> 30, 32, 33, 7, 28, 22, 24, 24, 27, 31, 17, 22, 6,…
$ PROX_CBD             <dbl> 7.941259, 6.609797, 6.898000, 4.038861, 11.783402…
$ PROX_CHILDCARE       <dbl> 0.16597932, 0.28027246, 0.42922669, 0.39473543, 0…
$ PROX_ELDERLYCARE     <dbl> 2.5198118, 1.9333338, 0.5021395, 1.9910316, 1.121…
$ PROX_URA_GROWTH_AREA <dbl> 6.618741, 7.505109, 6.463887, 4.906512, 6.410632,…
$ PROX_HAWKER_MARKET   <dbl> 1.76542207, 0.54507614, 0.37789301, 1.68259969, 0…
$ PROX_KINDERGARTEN    <dbl> 0.05835552, 0.61592412, 0.14120309, 0.38200076, 0…
$ PROX_MRT             <dbl> 0.5607188, 0.6584461, 0.3053433, 0.6910183, 0.528…
$ PROX_PARK            <dbl> 1.1710446, 0.1992269, 0.2779886, 0.9832843, 0.116…
$ PROX_PRIMARY_SCH     <dbl> 1.6340256, 0.9747834, 1.4715016, 1.4546324, 0.709…
$ PROX_TOP_PRIMARY_SCH <dbl> 3.3273195, 0.9747834, 1.4715016, 2.3006394, 0.709…
$ PROX_SHOPPING_MALL   <dbl> 2.2102717, 2.9374279, 1.2256850, 0.3525671, 1.307…
$ PROX_SUPERMARKET     <dbl> 0.9103958, 0.5900617, 0.4135583, 0.4162219, 0.581…
$ PROX_BUS_STOP        <dbl> 0.10336166, 0.28673408, 0.28504777, 0.29872340, 0…
$ NO_Of_UNITS          <dbl> 18, 20, 27, 30, 30, 31, 32, 32, 32, 32, 34, 34, 3…
$ FAMILY_FRIENDLY      <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0…
$ FREEHOLD             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1…
$ LEASEHOLD_99YR       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
# see the data in XCOORD column
head(condo_resale$LONGITUDE)
[1] 103.7802 103.8123 103.7971 103.8247 103.9505 103.9386
#see the data in YCOORD column
head(condo_resale$LATITUDE) 
[1] 1.287145 1.328698 1.313727 1.308563 1.321437 1.314198

We use summary() of base R is used to display the summary statistics of cond_resale tibble data frame.

summary(condo_resale)
    LATITUDE       LONGITUDE        POSTCODE      SELLING_PRICE     
 Min.   :1.240   Min.   :103.7   Min.   : 18965   Min.   :  540000  
 1st Qu.:1.309   1st Qu.:103.8   1st Qu.:259849   1st Qu.: 1100000  
 Median :1.328   Median :103.8   Median :469298   Median : 1383222  
 Mean   :1.334   Mean   :103.8   Mean   :440439   Mean   : 1751211  
 3rd Qu.:1.357   3rd Qu.:103.9   3rd Qu.:589486   3rd Qu.: 1950000  
 Max.   :1.454   Max.   :104.0   Max.   :828833   Max.   :18000000  
    AREA_SQM          AGE           PROX_CBD       PROX_CHILDCARE    
 Min.   : 34.0   Min.   : 0.00   Min.   : 0.3869   Min.   :0.004927  
 1st Qu.:103.0   1st Qu.: 5.00   1st Qu.: 5.5574   1st Qu.:0.174481  
 Median :121.0   Median :11.00   Median : 9.3567   Median :0.258135  
 Mean   :136.5   Mean   :12.14   Mean   : 9.3254   Mean   :0.326313  
 3rd Qu.:156.0   3rd Qu.:18.00   3rd Qu.:12.6661   3rd Qu.:0.368293  
 Max.   :619.0   Max.   :37.00   Max.   :19.1804   Max.   :3.465726  
 PROX_ELDERLYCARE  PROX_URA_GROWTH_AREA PROX_HAWKER_MARKET PROX_KINDERGARTEN 
 Min.   :0.05451   Min.   :0.2145       Min.   :0.05182    Min.   :0.004927  
 1st Qu.:0.61254   1st Qu.:3.1643       1st Qu.:0.55245    1st Qu.:0.276345  
 Median :0.94179   Median :4.6186       Median :0.90842    Median :0.413385  
 Mean   :1.05351   Mean   :4.5981       Mean   :1.27987    Mean   :0.458903  
 3rd Qu.:1.35122   3rd Qu.:5.7550       3rd Qu.:1.68578    3rd Qu.:0.578474  
 Max.   :3.94916   Max.   :9.1554       Max.   :5.37435    Max.   :2.229045  
    PROX_MRT         PROX_PARK       PROX_PRIMARY_SCH  PROX_TOP_PRIMARY_SCH
 Min.   :0.05278   Min.   :0.02906   Min.   :0.07711   Min.   :0.07711     
 1st Qu.:0.34646   1st Qu.:0.26211   1st Qu.:0.44024   1st Qu.:1.34451     
 Median :0.57430   Median :0.39926   Median :0.63505   Median :1.88213     
 Mean   :0.67316   Mean   :0.49802   Mean   :0.75471   Mean   :2.27347     
 3rd Qu.:0.84844   3rd Qu.:0.65592   3rd Qu.:0.95104   3rd Qu.:2.90954     
 Max.   :3.48037   Max.   :2.16105   Max.   :3.92899   Max.   :6.74819     
 PROX_SHOPPING_MALL PROX_SUPERMARKET PROX_BUS_STOP       NO_Of_UNITS    
 Min.   :0.0000     Min.   :0.0000   Min.   :0.001595   Min.   :  18.0  
 1st Qu.:0.5258     1st Qu.:0.3695   1st Qu.:0.098356   1st Qu.: 188.8  
 Median :0.9357     Median :0.5687   Median :0.151710   Median : 360.0  
 Mean   :1.0455     Mean   :0.6141   Mean   :0.193974   Mean   : 409.2  
 3rd Qu.:1.3994     3rd Qu.:0.7862   3rd Qu.:0.220466   3rd Qu.: 590.0  
 Max.   :3.4774     Max.   :2.2441   Max.   :2.476639   Max.   :1703.0  
 FAMILY_FRIENDLY     FREEHOLD      LEASEHOLD_99YR  
 Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
 Median :0.0000   Median :0.0000   Median :0.0000  
 Mean   :0.4868   Mean   :0.4227   Mean   :0.4882  
 3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
 Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  

6.6.2 Converting aspatial data frame into a sf object

Currently, the condo_resale tibble data frame is aspatial. We will convert it to a sf object. The code chunk below converts condo_resale data frame into a simple feature data frame by using st_as_sf() of sf packages.

condo_resale.sf <- st_as_sf(condo_resale,
                            coords = c("LONGITUDE", "LATITUDE"),
                            crs=4326) %>%
  st_transform(crs=3414)

Notice that st_transform() of sf package is used to convert the coordinates from wgs84 (i.e. crs:4326) to svy21 (i.e. crs=3414).

Next, head() is used to list the content of condo_resale.sf object.

head(condo_resale.sf)
Simple feature collection with 6 features and 21 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 22085.12 ymin: 29951.54 xmax: 41042.56 ymax: 34546.2
Projected CRS: SVY21 / Singapore TM
# A tibble: 6 × 22
  POSTCODE SELLI…¹ AREA_…²   AGE PROX_…³ PROX_…⁴ PROX_…⁵ PROX_…⁶ PROX_…⁷ PROX_…⁸
     <dbl>   <dbl>   <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
1   118635 3000000     309    30    7.94   0.166   2.52     6.62   1.77   0.0584
2   288420 3880000     290    32    6.61   0.280   1.93     7.51   0.545  0.616 
3   267833 3325000     248    33    6.90   0.429   0.502    6.46   0.378  0.141 
4   258380 4250000     127     7    4.04   0.395   1.99     4.91   1.68   0.382 
5   467169 1400000     145    28   11.8    0.119   1.12     6.41   0.565  0.461 
6   466472 1320000     139    22   10.3    0.125   0.789    5.09   0.781  0.0994
# … with 12 more variables: PROX_MRT <dbl>, PROX_PARK <dbl>,
#   PROX_PRIMARY_SCH <dbl>, PROX_TOP_PRIMARY_SCH <dbl>,
#   PROX_SHOPPING_MALL <dbl>, PROX_SUPERMARKET <dbl>, PROX_BUS_STOP <dbl>,
#   NO_Of_UNITS <dbl>, FAMILY_FRIENDLY <dbl>, FREEHOLD <dbl>,
#   LEASEHOLD_99YR <dbl>, geometry <POINT [m]>, and abbreviated variable names
#   ¹​SELLING_PRICE, ²​AREA_SQM, ³​PROX_CBD, ⁴​PROX_CHILDCARE, ⁵​PROX_ELDERLYCARE,
#   ⁶​PROX_URA_GROWTH_AREA, ⁷​PROX_HAWKER_MARKET, ⁸​PROX_KINDERGARTEN

Notice that the output (Geometry Type) is in point feature data frame.

6.7 Exploratory Data Analysis (EDA)

In the section, we learn how to use statistical graphics functions of ggplot2 package to perform EDA.

6.7.1 EDA using statistical graphics

We plot the distribution of SELLING_PRICE as shown in the code chunk below.

options(scipen=999)

ggplot(data=condo_resale.sf, aes(x=`SELLING_PRICE`)) +
  geom_histogram(bins=20, color="black", fill="light blue") + 
   ggtitle("Distribution of SELLING_RPICE")

The chart above reveals a right-skewed distribution. This means that more condominium units were transacted at relatively lower prices.

Statistically, the right-skewed distribution can be normalised by using log transformation. The code chunk below is used to derive a new variable called LOG_SELLING_PRICE by using a log transformation on the variable SELLING_PRICE. It is performed using mutate() of dplyr package.

# We add a constant +1 to avoid a situation where selling price = 0 
condo_resale.sf <- condo_resale.sf %>%
  mutate(`LOG_SELLING_PRICE` = log(SELLING_PRICE+1))

Now, you can plot the LOG_SELLING_PRICE using the code chunk below.

ggplot(data=condo_resale.sf, aes(x=`LOG_SELLING_PRICE`)) +
  geom_histogram(bins=20, color="black", fill="light blue") + 
   ggtitle("Distribution of LOG_SELLING_RPICE")

6.7.2 Multiple Histogram Plots distribution of variables

In this section,we learn how to draw a small multiple histograms (also known as Trellis plot) by using ggarrange() of ggpubr package.

The code chunk below is used to create 12 histograms. Then, ggarrange() is used to organised these histogram into a 3 columns by 4 rows small multiple plot.

AREA_SQM <- ggplot(data=condo_resale.sf, aes(x= `AREA_SQM`)) + 
  geom_histogram(bins=20, color="black", fill="light blue")

AGE <- ggplot(data=condo_resale.sf, aes(x= `AGE`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_CBD <- ggplot(data=condo_resale.sf, aes(x= `PROX_CBD`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_CHILDCARE <- ggplot(data=condo_resale.sf, aes(x= `PROX_CHILDCARE`)) + 
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_ELDERLYCARE <- ggplot(data=condo_resale.sf, aes(x= `PROX_ELDERLYCARE`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_URA_GROWTH_AREA <- ggplot(data=condo_resale.sf, 
                               aes(x= `PROX_URA_GROWTH_AREA`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_HAWKER_MARKET <- ggplot(data=condo_resale.sf, aes(x= `PROX_HAWKER_MARKET`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_KINDERGARTEN <- ggplot(data=condo_resale.sf, aes(x= `PROX_KINDERGARTEN`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_MRT <- ggplot(data=condo_resale.sf, aes(x= `PROX_MRT`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_PARK <- ggplot(data=condo_resale.sf, aes(x= `PROX_PARK`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_PRIMARY_SCH <- ggplot(data=condo_resale.sf, aes(x= `PROX_PRIMARY_SCH`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_TOP_PRIMARY_SCH <- ggplot(data=condo_resale.sf, 
                               aes(x= `PROX_TOP_PRIMARY_SCH`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

ggarrange(AREA_SQM, AGE, PROX_CBD, PROX_CHILDCARE, PROX_ELDERLYCARE, 
          PROX_URA_GROWTH_AREA, PROX_HAWKER_MARKET, PROX_KINDERGARTEN, PROX_MRT,
          PROX_PARK, PROX_PRIMARY_SCH, PROX_TOP_PRIMARY_SCH,  
          ncol = 3, nrow = 4)

6.7.3 Drawing Statistical Point Map

Lastly, we want to review the geospatial distribution condominium resale prices in Singapore. The map will be prepared by using tmap package.

First, we will turn on the interactive mode of tmap by using the code chunk below.

tmap_mode("view")

Next, the code chunks below is used to create an interactive point symbol map.

tmap_options(check.and.fix = TRUE)

tm_shape(mpsz_svy21)+
  tm_polygons() +
  tm_shape(condo_resale.sf) +  
  tm_dots(col = "SELLING_PRICE",
          alpha = 0.6,
          style="quantile") +
  tm_view(set.zoom.limits = c(11,14))

Notice that tm_dots() is used instead of tm_bubbles().

set.zoom.limits argument of tm_view() sets the minimum and maximum zoom level to 11 and 14 respectively.

Before moving on to the next section, the code below will be used to turn R display into plot mode.

tmap_mode("plot")

6.8 Hedonic Pricing Modelling in R

In this section, we learn how to building hedonic pricing models for condominium resale units using lm() of R base.

6.8.1 Simple Linear Regression Method

First, we will build a simple linear regression model by using SELLING_PRICE as the dependent variable and AREA_SQM as the independent variable.

condo.slr <- lm(formula=SELLING_PRICE ~ AREA_SQM, data = condo_resale.sf)

lm() returns an object of class “lm” or for multiple responses of class c(“mlm”, “lm”).

The functions summary() and anova() can be used to obtain and print a summary and analysis of variance table of the results.

summary(condo.slr)

Call:
lm(formula = SELLING_PRICE ~ AREA_SQM, data = condo_resale.sf)

Residuals:
     Min       1Q   Median       3Q      Max 
-3695815  -391764   -87517   258900 13503875 

Coefficients:
             Estimate Std. Error t value             Pr(>|t|)    
(Intercept) -258121.1    63517.2  -4.064            0.0000509 ***
AREA_SQM      14719.0      428.1  34.381 < 0.0000000000000002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 942700 on 1434 degrees of freedom
Multiple R-squared:  0.4518,    Adjusted R-squared:  0.4515 
F-statistic:  1182 on 1 and 1434 DF,  p-value: < 0.00000000000000022
anova(condo.slr)
Analysis of Variance Table

Response: SELLING_PRICE
            Df           Sum Sq          Mean Sq F value                Pr(>F)
AREA_SQM     1 1050376876745474 1050376876745474    1182 < 0.00000000000000022
Residuals 1434 1274269843399565     888612164156                              
             
AREA_SQM  ***
Residuals    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output report reveals that the SELLING_PRICE can be explained by using the formula:

      *y = -258121.1 + 14719x1* where x1 is the AREA_SQM

The R-squared (aka Coefficient of Determination) of 0.4518 reveals that the simple regression model built is able to explain about 45% of the variation in resale prices.

Y = 𝛼 + 𝛽X

ANOVA of mean:

The Analysis of Variance report provides the calculations for comparing the fitted model to a simple mean model. The hypotheses for the F-test are:

H0: 𝛽1 = 𝛽2 =. . . . = 𝛽𝑘 = 0

H1: N𝑜𝑡 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0

where k is the number of independent variables.

It reveals that the F-ratio is 1182 which is significant at p < 0.0001. This result tells us that there are less than 0.01% chance that an F-ratio this large will happen if the null hypothesis is true. Therefore, we can conclude that our regression model result is significantly better explanatory model of SELLING PRICE than if we used the mean value of re-sale prices. In short, the regression model overall estimates SELLING PRICE significantly well.

For the intercept and slope values under the Coefficients section

H0: α = 0 (intercept)

H1: α ≠ 0

H0: β = 0 (slope)

H1: β ≠ 0

The report reveals that the p-values of both the estimates of the Intercept and ARA_SQM are smaller than 0.001. In view of this, the null hypothesis of the α and β are equal to 0 will be rejected. As a result, we infer that the α and β are good parameter estimates.

To visualise the best fit curve on a scatterplot, we can incorporate lm() as a method function in ggplot as shown in the code chunk below.

ggplot(data=condo_resale.sf,  
       aes(x=`AREA_SQM`, y=`SELLING_PRICE`)) +
  geom_point() +
  geom_smooth(method = lm) +
  ggtitle("LM plot of Selling Price vs Area")

The chart above reveals that there are a few outliers with relatively high selling prices.

6.8.2 Multiple Linear Regression Method

6.8.2.1 Visualising the relationships of the independent variables

Before building a multiple regression model, it is important to ensure that the independent variables used are not highly correlated to each other. If these highly correlated independent variables are used in building a regression model by mistake, the quality of the model will be compromised. This phenomenon is known as multicollinearity in statistics.

Correlation matrix is commonly used to visualise the relationships between the independent variables. Beside the pairs() of R, many packages support the display of a correlation matrix. In this section, the corrplot package is used.

The code chunk below is used to plot a matrix of the relationship between the independent variables in condo_resale data.frame.

corrplot(cor(condo_resale[, 5:23]), diag = FALSE, order = "AOE",
         tl.pos = "td", tl.cex = 0.5, method = "number", type = "upper")

Things to note:

  • The matrix order argument is very important for determining the hidden structure and pattern in the matrix. There are four methods in corrplot (parameter order), named “AOE”, “FPC”, “hclust”, “alphabet”. In the code chunk above, AOE order is used. It orders the variables by using the angular order of the eigenvectors method suggested by Michael Friendly.

  • From the plotted matrix, it is clear that Freehold is highly correlated to LEASE_99YEAR. In view of this, it is wiser to only include either one of them in the subsequent model building. As a result, LEASE_99YEAR is excluded in the subsequent model building.

6.8.3 Build a hedonic pricing model using multiple linear regression method

The code chunk below using lm() to calibrate the multiple linear regression model.

# Fit the regrssion model
condo.mlr <- lm(formula = SELLING_PRICE ~ AREA_SQM + AGE    + 
                  PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE +
                  PROX_URA_GROWTH_AREA + PROX_HAWKER_MARKET + PROX_KINDERGARTEN + 
                  PROX_MRT  + PROX_PARK + PROX_PRIMARY_SCH + 
                  PROX_TOP_PRIMARY_SCH + PROX_SHOPPING_MALL + PROX_SUPERMARKET + 
                  PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
                data=condo_resale.sf)

# Display the results
summary(condo.mlr)

Call:
lm(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + PROX_CHILDCARE + 
    PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + PROX_HAWKER_MARKET + 
    PROX_KINDERGARTEN + PROX_MRT + PROX_PARK + PROX_PRIMARY_SCH + 
    PROX_TOP_PRIMARY_SCH + PROX_SHOPPING_MALL + PROX_SUPERMARKET + 
    PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
    data = condo_resale.sf)

Residuals:
     Min       1Q   Median       3Q      Max 
-3475964  -293923   -23069   241043 12260381 

Coefficients:
                       Estimate Std. Error t value             Pr(>|t|)    
(Intercept)           481728.40  121441.01   3.967    0.000076494714281 ***
AREA_SQM               12708.32     369.59  34.385 < 0.0000000000000002 ***
AGE                   -24440.82    2763.16  -8.845 < 0.0000000000000002 ***
PROX_CBD              -78669.78    6768.97 -11.622 < 0.0000000000000002 ***
PROX_CHILDCARE       -351617.91  109467.25  -3.212              0.00135 ** 
PROX_ELDERLYCARE      171029.42   42110.51   4.061    0.000051440615323 ***
PROX_URA_GROWTH_AREA   38474.53   12523.57   3.072              0.00217 ** 
PROX_HAWKER_MARKET     23746.10   29299.76   0.810              0.41782    
PROX_KINDERGARTEN     147468.99   82668.87   1.784              0.07466 .  
PROX_MRT             -314599.68   57947.44  -5.429    0.000000066573105 ***
PROX_PARK             563280.50   66551.68   8.464 < 0.0000000000000002 ***
PROX_PRIMARY_SCH      180186.08   65237.95   2.762              0.00582 ** 
PROX_TOP_PRIMARY_SCH    2280.04   20410.43   0.112              0.91107    
PROX_SHOPPING_MALL   -206604.06   42840.60  -4.823    0.000001569612974 ***
PROX_SUPERMARKET      -44991.80   77082.64  -0.584              0.55953    
PROX_BUS_STOP         683121.35  138353.28   4.938    0.000000885077155 ***
NO_Of_UNITS             -231.18      89.03  -2.597              0.00951 ** 
FAMILY_FRIENDLY       140340.77   47020.55   2.985              0.00289 ** 
FREEHOLD              359913.01   49220.22   7.312    0.000000000000438 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 755800 on 1417 degrees of freedom
Multiple R-squared:  0.6518,    Adjusted R-squared:  0.6474 
F-statistic: 147.4 on 18 and 1417 DF,  p-value: < 0.00000000000000022

6.8.4 Prepare Publication Quality Table: olsrr method

With reference to the report above, it is clear that not all the independent variables are statistically significant. We will revise the model by removing those variables which are not statistically significant.

Now, we are ready to calibrate a revised model by using the code chunk below.

condo.mlr1 <- lm(formula = SELLING_PRICE ~ AREA_SQM + AGE + 
                   PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE +
                   PROX_URA_GROWTH_AREA + PROX_MRT  + PROX_PARK + 
                   PROX_PRIMARY_SCH + PROX_SHOPPING_MALL    + PROX_BUS_STOP + 
                   NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD,
                 data=condo_resale.sf)

ols_regress(condo.mlr1)
                             Model Summary                               
------------------------------------------------------------------------
R                       0.807       RMSE                     755957.289 
R-Squared               0.651       Coef. Var                    43.168 
Adj. R-Squared          0.647       MSE                571471422208.591 
Pred R-Squared          0.638       MAE                      414819.628 
------------------------------------------------------------------------
 RMSE: Root Mean Square Error 
 MSE: Mean Square Error 
 MAE: Mean Absolute Error 

                                           ANOVA                                            
-------------------------------------------------------------------------------------------
                            Sum of                                                         
                           Squares          DF            Mean Square       F         Sig. 
-------------------------------------------------------------------------------------------
Regression    1512585829186630.500          14    108041844941902.172    189.059    0.0000 
Residual       812060890958408.500        1421       571471422208.591                      
Total         2324646720145039.000        1435                                             
-------------------------------------------------------------------------------------------

                                               Parameter Estimates                                                
-----------------------------------------------------------------------------------------------------------------
               model           Beta    Std. Error    Std. Beta       t        Sig           lower          upper 
-----------------------------------------------------------------------------------------------------------------
         (Intercept)     527633.222    108183.223                   4.877    0.000     315417.244     739849.200 
            AREA_SQM      12777.523       367.479        0.584     34.771    0.000      12056.663      13498.382 
                 AGE     -24687.739      2754.845       -0.167     -8.962    0.000     -30091.739     -19283.740 
            PROX_CBD     -77131.323      5763.125       -0.263    -13.384    0.000     -88436.469     -65826.176 
      PROX_CHILDCARE    -318472.751    107959.512       -0.084     -2.950    0.003    -530249.889    -106695.613 
    PROX_ELDERLYCARE     185575.623     39901.864        0.090      4.651    0.000     107302.737     263848.510 
PROX_URA_GROWTH_AREA      39163.254     11754.829        0.060      3.332    0.001      16104.571      62221.936 
            PROX_MRT    -294745.107     56916.367       -0.112     -5.179    0.000    -406394.234    -183095.980 
           PROX_PARK     570504.807     65507.029        0.150      8.709    0.000     442003.938     699005.677 
    PROX_PRIMARY_SCH     159856.136     60234.599        0.062      2.654    0.008      41697.849     278014.424 
  PROX_SHOPPING_MALL    -220947.251     36561.832       -0.115     -6.043    0.000    -292668.213    -149226.288 
       PROX_BUS_STOP     682482.221    134513.243        0.134      5.074    0.000     418616.359     946348.082 
         NO_Of_UNITS       -245.480        87.947       -0.053     -2.791    0.005       -418.000        -72.961 
     FAMILY_FRIENDLY     146307.576     46893.021        0.057      3.120    0.002      54320.593     238294.560 
            FREEHOLD     350599.812     48506.485        0.136      7.228    0.000     255447.802     445751.821 
-----------------------------------------------------------------------------------------------------------------

6.8.5 Prepare Publication Quality Table: gtsummary method

The gtsummary package provides an elegant and flexible way to create publication-ready summary tables in R.

In the code chunk below, tbl_regression() is used to create a well formatted regression report.

tbl_regression(condo.mlr1, intercept = TRUE)
Characteristic Beta 95% CI1 p-value
(Intercept) 527,633 315,417, 739,849 <0.001
AREA_SQM 12,778 12,057, 13,498 <0.001
AGE -24,688 -30,092, -19,284 <0.001
PROX_CBD -77,131 -88,436, -65,826 <0.001
PROX_CHILDCARE -318,473 -530,250, -106,696 0.003
PROX_ELDERLYCARE 185,576 107,303, 263,849 <0.001
PROX_URA_GROWTH_AREA 39,163 16,105, 62,222 <0.001
PROX_MRT -294,745 -406,394, -183,096 <0.001
PROX_PARK 570,505 442,004, 699,006 <0.001
PROX_PRIMARY_SCH 159,856 41,698, 278,014 0.008
PROX_SHOPPING_MALL -220,947 -292,668, -149,226 <0.001
PROX_BUS_STOP 682,482 418,616, 946,348 <0.001
NO_Of_UNITS -245 -418, -73 0.005
FAMILY_FRIENDLY 146,308 54,321, 238,295 0.002
FREEHOLD 350,600 255,448, 445,752 <0.001
1 CI = Confidence Interval

With the gtsummary package, model statistics can be included in the report by either appending them to the report table by using add_glance_table() or adding as a table source note by using add_glance_source_note() as shown in the code chunk below.

tbl_regression(condo.mlr1, 
               intercept = TRUE) %>% 
  add_glance_source_note(
    label = list(sigma ~ "\U03C3"),
    include = c(r.squared, adj.r.squared, 
                AIC, statistic,
                p.value, sigma))
Characteristic Beta 95% CI1 p-value
(Intercept) 527,633 315,417, 739,849 <0.001
AREA_SQM 12,778 12,057, 13,498 <0.001
AGE -24,688 -30,092, -19,284 <0.001
PROX_CBD -77,131 -88,436, -65,826 <0.001
PROX_CHILDCARE -318,473 -530,250, -106,696 0.003
PROX_ELDERLYCARE 185,576 107,303, 263,849 <0.001
PROX_URA_GROWTH_AREA 39,163 16,105, 62,222 <0.001
PROX_MRT -294,745 -406,394, -183,096 <0.001
PROX_PARK 570,505 442,004, 699,006 <0.001
PROX_PRIMARY_SCH 159,856 41,698, 278,014 0.008
PROX_SHOPPING_MALL -220,947 -292,668, -149,226 <0.001
PROX_BUS_STOP 682,482 418,616, 946,348 <0.001
NO_Of_UNITS -245 -418, -73 0.005
FAMILY_FRIENDLY 146,308 54,321, 238,295 0.002
FREEHOLD 350,600 255,448, 445,752 <0.001
R² = 0.651; Adjusted R² = 0.647; AIC = 42,967; Statistic = 189; p-value = <0.001; σ = 755,957
1 CI = Confidence Interval

The additional statistics have been added at the bottom of the report.

For more customisation options, refer to Tutorial: tbl_regression

6.8.5.1 Checking for multicolinearity

In this section, we would use a fantastic R package specially programmed for performing OLS regression. It is called olsrr. It provides a collection of very useful methods for building better multiple linear regression models:

  • comprehensive regression output

  • residual diagnostics

  • measures of influence

  • heteroskedasticity tests

  • collinearity diagnostics

  • model fit assessment

  • variable contribution assessment

  • variable selection procedures

In the code chunk below, the ols_vif_tol() of olsrr package is used to test if there are sign of multicollinearity.

ols_vif_tol(condo.mlr1)
              Variables Tolerance      VIF
1              AREA_SQM 0.8728554 1.145665
2                   AGE 0.7071275 1.414172
3              PROX_CBD 0.6356147 1.573280
4        PROX_CHILDCARE 0.3066019 3.261559
5      PROX_ELDERLYCARE 0.6598479 1.515501
6  PROX_URA_GROWTH_AREA 0.7510311 1.331503
7              PROX_MRT 0.5236090 1.909822
8             PROX_PARK 0.8279261 1.207837
9      PROX_PRIMARY_SCH 0.4524628 2.210126
10   PROX_SHOPPING_MALL 0.6738795 1.483945
11        PROX_BUS_STOP 0.3514118 2.845664
12          NO_Of_UNITS 0.6901036 1.449058
13      FAMILY_FRIENDLY 0.7244157 1.380423
14             FREEHOLD 0.6931163 1.442759

Since the VIF of the independent variables is less than 10. We can safely conclude that there are no sign of multicollinearity among the independent variables.

6.8.5.2 Test for Non-Linearity

In multiple linear regression, it is important for us to test the assumption that linearity and additivity of the relationship between dependent and independent variables.

In the code chunk below, the ols_plot_resid_fit() of olsrr package is used to perform linearity assumption test.

ols_plot_resid_fit(condo.mlr1)

The chart above reveals that most of the data poitns are scattered around the 0 line. Hence we can safely conclude that the relationships between the dependent variable and independent variables are linear.

6.8.5.3 Test for Normality Assumption of the residual errors

Lastly, the code chunk below uses ols_plot_resid_hist() of olsrr package to perform normality assumption test.

ols_plot_resid_hist(condo.mlr1)

The figure reveals that the residual of the multiple linear regression model (i.e. condo.mlr1) resembles normal distribution.

For formal statistical test methods, the ols_test_normality() of olsrr package can be used as shown in the code chun below.

ols_test_normality(condo.mlr1)
-----------------------------------------------
       Test             Statistic       pvalue  
-----------------------------------------------
Shapiro-Wilk              0.6856         0.0000 
Kolmogorov-Smirnov        0.1366         0.0000 
Cramer-von Mises         121.0768        0.0000 
Anderson-Darling         67.9551         0.0000 
-----------------------------------------------

The summary table above reveals that the p-values of the four tests are way smaller than the alpha value of 0.05. Hence we will reject the null hypothesis and infer that there is statistical evidence that the residuals are not normally distributed.

6.8.5.4 Testing for Spatial Autocorrelation

The hedonic model we try to build uses geographically referenced attributes, hence it is also important for us to visualise the residual of the hedonic pricing model.

In order to perform spatial autocorrelation test, we need to convert condo_resale.sf from sf data frame into a SpatialPointsDataFrame.

First, we will export the residual of the hedonic pricing model and save it as a data frame.

mlr.output <- as.data.frame(condo.mlr1$residuals)

Next, we will join the newly created data frame with condo_resale.sf object.

condo_resale.res.sf <- cbind(condo_resale.sf, 
                        condo.mlr1$residuals) %>%
rename(`MLR_RES` = `condo.mlr1.residuals`)

Next, we convert condo_resale.res.sf from simple feature object into a SpatialPointsDataFrame because spdep package can only process sp conformed spatial data objects.

The code chunk below will be used to perform the data conversion process.

condo_resale.sp <- as_Spatial(condo_resale.res.sf)
condo_resale.sp
class       : SpatialPointsDataFrame 
features    : 1436 
extent      : 14940.85, 43352.45, 24765.67, 48382.81  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs 
variables   : 23
names       : POSTCODE, SELLING_PRICE, AREA_SQM, AGE,    PROX_CBD, PROX_CHILDCARE, PROX_ELDERLYCARE, PROX_URA_GROWTH_AREA, PROX_HAWKER_MARKET, PROX_KINDERGARTEN,    PROX_MRT,   PROX_PARK, PROX_PRIMARY_SCH, PROX_TOP_PRIMARY_SCH, PROX_SHOPPING_MALL, ... 
min values  :    18965,        540000,       34,   0, 0.386916393,    0.004927023,      0.054508623,          0.214539508,        0.051817113,       0.004927023, 0.052779424, 0.029064164,      0.077106132,          0.077106132,                  0, ... 
max values  :   828833,      18000000,      619,  37, 19.18042832,     3.46572633,      3.949157205,           9.15540001,        5.374348075,       2.229045366,  3.48037319,  2.16104919,      3.928989144,          6.748192062,        3.477433767, ... 

Next, we use tmap package to display the distribution of the residuals on an interactive map.

The code churn below will turn on the interactive mode of tmap.

tmap_mode("view")

The code chunks below is used to create an interactive point symbol map.

tm_shape(mpsz_svy21)+
  tmap_options(check.and.fix = TRUE) +
  tm_polygons(alpha = 0.4) +
  tm_shape(condo_resale.res.sf) +  
  tm_dots(col = "MLR_RES",
          alpha = 0.6,
          style="quantile") +
  tm_view(set.zoom.limits = c(11,14))

We switch back to “plot” mode before we continue.

tmap_mode("plot")

The figure above reveal that there is sign of spatial autocorrelation.

To prove that our observation is indeed true, the Moran’s I test will be performed

First, we will compute the distance-based weight matrix by using dnearneigh() function of spdep.

nb <- dnearneigh(coordinates(condo_resale.sp), 0, 1500, longlat = FALSE)
summary(nb)
Neighbour list object:
Number of regions: 1436 
Number of nonzero links: 66266 
Percentage nonzero weights: 3.213526 
Average number of links: 46.14624 
Link number distribution:

  1   3   5   7   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 
  3   3   9   4   3  15  10  19  17  45  19   5  14  29  19   6  35  45  18  47 
 25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44 
 16  43  22  26  21  11   9  23  22  13  16  25  21  37  16  18   8  21   4  12 
 45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64 
  8  36  18  14  14  43  11  12   8  13  12  13   4   5   6  12  11  20  29  33 
 65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84 
 15  20  10  14  15  15  11  16  12  10   8  19  12  14   9   8   4  13  11   6 
 85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 
  4   9   4   4   4   6   2  16   9   4   5   9   3   9   4   2   1   2   1   1 
105 106 107 108 109 110 112 116 125 
  1   5   9   2   1   3   1   1   1 
3 least connected regions:
193 194 277 with 1 link
1 most connected region:
285 with 125 links

Next, nb2listw() of spdep packge will be used to convert the output neighbours lists (i.e. nb) into a spatial weights.

nb_lw <- nb2listw(nb, style = 'W')
summary(nb_lw)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 1436 
Number of nonzero links: 66266 
Percentage nonzero weights: 3.213526 
Average number of links: 46.14624 
Link number distribution:

  1   3   5   7   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 
  3   3   9   4   3  15  10  19  17  45  19   5  14  29  19   6  35  45  18  47 
 25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44 
 16  43  22  26  21  11   9  23  22  13  16  25  21  37  16  18   8  21   4  12 
 45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64 
  8  36  18  14  14  43  11  12   8  13  12  13   4   5   6  12  11  20  29  33 
 65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84 
 15  20  10  14  15  15  11  16  12  10   8  19  12  14   9   8   4  13  11   6 
 85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 
  4   9   4   4   4   6   2  16   9   4   5   9   3   9   4   2   1   2   1   1 
105 106 107 108 109 110 112 116 125 
  1   5   9   2   1   3   1   1   1 
3 least connected regions:
193 194 277 with 1 link
1 most connected region:
285 with 125 links

Weights style: W 
Weights constants summary:
     n      nn   S0       S1       S2
W 1436 2062096 1436 94.81916 5798.341

We use lm.morantest() of spdep package to perform Moran’s I test for residual spatial autocorrelation.

lm.morantest(condo.mlr1, nb_lw)

    Global Moran I for regression residuals

data:  
model: lm(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD +
PROX_CHILDCARE + PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + PROX_MRT +
PROX_PARK + PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + PROX_BUS_STOP +
NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, data = condo_resale.sf)
weights: nb_lw

Moran I statistic standard deviate = 24.366, p-value <
0.00000000000000022
alternative hypothesis: greater
sample estimates:
Observed Moran I      Expectation         Variance 
   0.14388758039   -0.00548759352    0.00003758259 

The Global Moran’s I test for residual spatial autocorrelation shows that it’s p-value is less than 0.00000000000000022 which is less than the alpha value of 0.05. Hence, we reject the null hypothesis that the residuals are randomly distributed.

Since the observed Global Moran I = 0.1424418 which is greater than 0, we can infer than the residuals resemble cluster distribution.

6.9 Building Hedonic Pricing Models using GWmodel

In this section, we learn how to model hedonic pricing using both the fixed and adaptive bandwidth schemes

6.9.1 Build Fixed Bandwidth GWR Model

6.9.1.1 Compute fixed bandwith

In the code chunk below bw.gwr() of GWModel package is used to determine the optimal fixed bandwidth to use in the model.

Notice that the adaptive argument of the function is set to FALSE to indicate that we are interested to compute the fixed bandwidth.

There are two possible approaches to determine the stopping rule using the approach argument, they are:

  • CV cross-validation approach and

  • AIC corrected (AICc) approach.

bw.fixed <- bw.gwr(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
                     PROX_CHILDCARE + PROX_ELDERLYCARE  + PROX_URA_GROWTH_AREA + 
                     PROX_MRT   + PROX_PARK + PROX_PRIMARY_SCH + 
                     PROX_SHOPPING_MALL + PROX_BUS_STOP + NO_Of_UNITS + 
                     FAMILY_FRIENDLY + FREEHOLD, 
                   data=condo_resale.sp, 
                   approach="CV", 
                   kernel="gaussian", 
                   adaptive=FALSE, 
                   longlat=FALSE)
Fixed bandwidth: 17660.96 CV score: 825911822102784 
Fixed bandwidth: 10917.26 CV score: 797045428603044 
Fixed bandwidth: 6749.419 CV score: 727327288217123 
Fixed bandwidth: 4173.553 CV score: 630000557301613 
Fixed bandwidth: 2581.58 CV score: 540495781061281 
Fixed bandwidth: 1597.687 CV score: 485751468826412 
Fixed bandwidth: 989.6077 CV score: 472243119301430 
Fixed bandwidth: 613.7939 CV score: 13782937640587258 
Fixed bandwidth: 1221.873 CV score: 477871653167391 
Fixed bandwidth: 846.0596 CV score: 479162862134549 
Fixed bandwidth: 1078.325 CV score: 475140559147296 
Fixed bandwidth: 934.7772 CV score: 472517998221988 
Fixed bandwidth: 1023.495 CV score: 473030451602862 
Fixed bandwidth: 968.6643 CV score: 472131662464349 
Fixed bandwidth: 955.7206 CV score: 472207171142149 
Fixed bandwidth: 976.6639 CV score: 472138689617517 
Fixed bandwidth: 963.7202 CV score: 472148360843733 
Fixed bandwidth: 971.7199 CV score: 472129280399246 
Fixed bandwidth: 973.6083 CV score: 472130919502945 
Fixed bandwidth: 970.5527 CV score: 472129460396064 
Fixed bandwidth: 972.4412 CV score: 472129623282981 
Fixed bandwidth: 971.2741 CV score: 472129241640866 
Fixed bandwidth: 970.9985 CV score: 472129284813527 
Fixed bandwidth: 971.4443 CV score: 472129240228113 
Fixed bandwidth: 971.5496 CV score: 472129250323808 
Fixed bandwidth: 971.3793 CV score: 472129239194007 
Fixed bandwidth: 971.3391 CV score: 472129239110127 
Fixed bandwidth: 971.3143 CV score: 472129239714645 
Fixed bandwidth: 971.3545 CV score: 472129239206061 
Fixed bandwidth: 971.3296 CV score: 472129239931915 
Fixed bandwidth: 971.345 CV score: 472129239140163 
Fixed bandwidth: 971.3355 CV score: 472129239682463 
Fixed bandwidth: 971.3413 CV score: 472129239743000 
Fixed bandwidth: 971.3377 CV score: 472129239211951 
Fixed bandwidth: 971.34 CV score: 472129238819453 
Fixed bandwidth: 971.3405 CV score: 472129238593600 
Fixed bandwidth: 971.3408 CV score: 472129238647549 
Fixed bandwidth: 971.3403 CV score: 472129239624159 
Fixed bandwidth: 971.3406 CV score: 472129239431032 
Fixed bandwidth: 971.3404 CV score: 472129239241864 
Fixed bandwidth: 971.3405 CV score: 472129239130278 
Fixed bandwidth: 971.3405 CV score: 472129238832217 

The result shows that the recommended bandwidth is 971.3398 metres.

Quiz:

Do you know why it is in metres?

Reply: The Projected CRS of SVY21 and transformed equivalent under EPSG:3414 for the URA Master Plan 2014’s planning subzone boundarie sare measured in metres.

6.9.1.2 GWModel method - fixed bandwith

Now we can use the code chunk below to calibrate the GWR model using fixed bandwidth and gaussian kernel.

gwr.fixed <- gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
                         PROX_CHILDCARE + PROX_ELDERLYCARE  + PROX_URA_GROWTH_AREA + 
                         PROX_MRT   + PROX_PARK + PROX_PRIMARY_SCH + 
                         PROX_SHOPPING_MALL + PROX_BUS_STOP + NO_Of_UNITS + 
                         FAMILY_FRIENDLY + FREEHOLD, 
                       data=condo_resale.sp, 
                       bw=bw.fixed, 
                       kernel = 'gaussian', 
                       longlat = FALSE)

The output is saved in a list of class “gwrm”. The code below is used to display the model output.

gwr.fixed
   ***********************************************************************
   *                       Package   GWmodel                             *
   ***********************************************************************
   Program starts at: 2022-12-17 23:50:58 
   Call:
   gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
    PROX_CHILDCARE + PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + 
    PROX_MRT + PROX_PARK + PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + 
    PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
    data = condo_resale.sp, bw = bw.fixed, kernel = "gaussian", 
    longlat = FALSE)

   Dependent (y) variable:  SELLING_PRICE
   Independent variables:  AREA_SQM AGE PROX_CBD PROX_CHILDCARE PROX_ELDERLYCARE PROX_URA_GROWTH_AREA PROX_MRT PROX_PARK PROX_PRIMARY_SCH PROX_SHOPPING_MALL PROX_BUS_STOP NO_Of_UNITS FAMILY_FRIENDLY FREEHOLD
   Number of data points: 1436
   ***********************************************************************
   *                    Results of Global Regression                     *
   ***********************************************************************

   Call:
    lm(formula = formula, data = data)

   Residuals:
     Min       1Q   Median       3Q      Max 
-3470778  -298119   -23481   248917 12234210 

   Coefficients:
                          Estimate Std. Error t value             Pr(>|t|)    
   (Intercept)           527633.22  108183.22   4.877    0.000001196976743 ***
   AREA_SQM               12777.52     367.48  34.771 < 0.0000000000000002 ***
   AGE                   -24687.74    2754.84  -8.962 < 0.0000000000000002 ***
   PROX_CBD              -77131.32    5763.12 -13.384 < 0.0000000000000002 ***
   PROX_CHILDCARE       -318472.75  107959.51  -2.950             0.003231 ** 
   PROX_ELDERLYCARE      185575.62   39901.86   4.651    0.000003613932545 ***
   PROX_URA_GROWTH_AREA   39163.25   11754.83   3.332             0.000885 ***
   PROX_MRT             -294745.11   56916.37  -5.179    0.000000255705220 ***
   PROX_PARK             570504.81   65507.03   8.709 < 0.0000000000000002 ***
   PROX_PRIMARY_SCH      159856.14   60234.60   2.654             0.008046 ** 
   PROX_SHOPPING_MALL   -220947.25   36561.83  -6.043    0.000000001927962 ***
   PROX_BUS_STOP         682482.22  134513.24   5.074    0.000000441637621 ***
   NO_Of_UNITS             -245.48      87.95  -2.791             0.005321 ** 
   FAMILY_FRIENDLY       146307.58   46893.02   3.120             0.001845 ** 
   FREEHOLD              350599.81   48506.48   7.228    0.000000000000798 ***

   ---Significance stars
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
   Residual standard error: 756000 on 1421 degrees of freedom
   Multiple R-squared: 0.6507
   Adjusted R-squared: 0.6472 
   F-statistic: 189.1 on 14 and 1421 DF,  p-value: < 0.00000000000000022 
   ***Extra Diagnostic information
   Residual sum of squares: 812060890958409
   Sigma(hat): 752522.9
   AIC:  42966.76
   AICc:  42967.14
   BIC:  41731.39
   ***********************************************************************
   *          Results of Geographically Weighted Regression              *
   ***********************************************************************

   *********************Model calibration information*********************
   Kernel function: gaussian 
   Fixed bandwidth: 971.3405 
   Regression points: the same locations as observations are used.
   Distance metric: Euclidean distance metric is used.

   ****************Summary of GWR coefficient estimates:******************
                                 Min.       1st Qu.        Median       3rd Qu.
   Intercept            -35988365.488   -519979.772    767797.337   1741234.306
   AREA_SQM                  1000.279      5275.779      7474.018     12300.971
   AGE                    -134749.495    -20813.274     -8626.003     -3778.370
   PROX_CBD             -77047270.137   -236081.916    -83599.576     34645.575
   PROX_CHILDCARE        -6009730.044   -336665.767    -97425.465    290074.489
   PROX_ELDERLYCARE      -3500042.494   -159702.666     31970.528    195774.638
   PROX_URA_GROWTH_AREA  -3016996.080    -82013.243     70749.084    226119.338
   PROX_MRT              -3528172.076   -658357.468   -188328.987     36922.070
   PROX_PARK             -1206240.925   -217315.894     35383.116    413347.109
   PROX_PRIMARY_SCH     -22695027.094   -170660.239     48471.907    515551.477
   PROX_SHOPPING_MALL    -7258466.404   -166844.608    -10516.913    159227.798
   PROX_BUS_STOP         -1467612.709    -45206.664    376007.005   1166445.776
   NO_Of_UNITS              -1317.036      -248.223       -30.846       254.959
   FAMILY_FRIENDLY       -2274938.102   -111395.125      7621.363    161067.297
   FREEHOLD              -9206722.091     38073.481    151694.047    375277.911
                             Max.
   Intercept            112793548
   AREA_SQM                 21575
   AGE                     434201
   PROX_CBD               2704596
   PROX_CHILDCARE         1654087
   PROX_ELDERLYCARE      38867814
   PROX_URA_GROWTH_AREA  78515730
   PROX_MRT               3124316
   PROX_PARK             18122425
   PROX_PRIMARY_SCH       4637503
   PROX_SHOPPING_MALL     1529952
   PROX_BUS_STOP         11342182
   NO_Of_UNITS              12907
   FAMILY_FRIENDLY        1720744
   FREEHOLD               6073636
   ************************Diagnostic information*************************
   Number of data points: 1436 
   Effective number of parameters (2trace(S) - trace(S'S)): 438.3804 
   Effective degrees of freedom (n-2trace(S) + trace(S'S)): 997.6196 
   AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): 42263.61 
   AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): 41632.36 
   BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): 42515.71 
   Residual sum of squares: 253407016000767 
   R-square value:  0.8909912 
   Adjusted R-square value:  0.8430417 

   ***********************************************************************
   Program stops at: 2022-12-17 23:50:59 

The report shows that the Adjusted R-square of the gwr is 0.8430 which is significantly better than the global multiple linear regression model of 0.6472.

6.9.2 Build Adaptive Bandwidth GWR Model

In this section, we calibrate the gwr-absed hedonic pricing model by using the adaptive bandwidth approach.

6.9.2.1 Compute the adaptive bandwidth

Similar to the earlier section, we first use bw.ger() to determine the recommended data point to use.

The code chunk used look very similar to the one used to compute the fixed bandwidth except the adaptive argument has changed to TRUE.

bw.adaptive <- bw.gwr(formula = SELLING_PRICE ~ AREA_SQM + AGE  + 
                        PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE    + 
                        PROX_URA_GROWTH_AREA + PROX_MRT + PROX_PARK + 
                        PROX_PRIMARY_SCH + PROX_SHOPPING_MALL   + PROX_BUS_STOP + 
                        NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
                      data=condo_resale.sp, 
                      approach="CV", 
                      kernel="gaussian", 
                      adaptive=TRUE, 
                      longlat=FALSE)
Adaptive bandwidth: 895 CV score: 795240067952916 
Adaptive bandwidth: 561 CV score: 766736415369131 
Adaptive bandwidth: 354 CV score: 695345377846985 
Adaptive bandwidth: 226 CV score: 615223032444228 
Adaptive bandwidth: 147 CV score: 567437338972766 
Adaptive bandwidth: 98 CV score: 542674453374480 
Adaptive bandwidth: 68 CV score: 516811696101366 
Adaptive bandwidth: 49 CV score: 485963124854345 
Adaptive bandwidth: 37 CV score: 464651804391025 
Adaptive bandwidth: 30 CV score: 442208792500332 
Adaptive bandwidth: 25 CV score: 443081571798103 
Adaptive bandwidth: 32 CV score: 450560182354864 
Adaptive bandwidth: 27 CV score: 446217190611572 
Adaptive bandwidth: 30 CV score: 442208792500332 

The result shows that the 30 is the recommended data points to be used.

6.9.2.2 Constructing the adaptive bandwidth gwr model

Now, we can go ahead to calibrate the gwr-based hedonic pricing model by using adaptive bandwidth and gaussian kernel as shown in the code chunk below.

gwr.adaptive <- gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + 
                            PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE + 
                            PROX_URA_GROWTH_AREA + PROX_MRT + PROX_PARK + 
                            PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + PROX_BUS_STOP + 
                            NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
                          data=condo_resale.sp, bw=bw.adaptive, 
                          kernel = 'gaussian', 
                          adaptive=TRUE, 
                          longlat = FALSE)

The code below can be used to display the model output.

gwr.adaptive
   ***********************************************************************
   *                       Package   GWmodel                             *
   ***********************************************************************
   Program starts at: 2022-12-17 23:51:04 
   Call:
   gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
    PROX_CHILDCARE + PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + 
    PROX_MRT + PROX_PARK + PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + 
    PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
    data = condo_resale.sp, bw = bw.adaptive, kernel = "gaussian", 
    adaptive = TRUE, longlat = FALSE)

   Dependent (y) variable:  SELLING_PRICE
   Independent variables:  AREA_SQM AGE PROX_CBD PROX_CHILDCARE PROX_ELDERLYCARE PROX_URA_GROWTH_AREA PROX_MRT PROX_PARK PROX_PRIMARY_SCH PROX_SHOPPING_MALL PROX_BUS_STOP NO_Of_UNITS FAMILY_FRIENDLY FREEHOLD
   Number of data points: 1436
   ***********************************************************************
   *                    Results of Global Regression                     *
   ***********************************************************************

   Call:
    lm(formula = formula, data = data)

   Residuals:
     Min       1Q   Median       3Q      Max 
-3470778  -298119   -23481   248917 12234210 

   Coefficients:
                          Estimate Std. Error t value             Pr(>|t|)    
   (Intercept)           527633.22  108183.22   4.877    0.000001196976743 ***
   AREA_SQM               12777.52     367.48  34.771 < 0.0000000000000002 ***
   AGE                   -24687.74    2754.84  -8.962 < 0.0000000000000002 ***
   PROX_CBD              -77131.32    5763.12 -13.384 < 0.0000000000000002 ***
   PROX_CHILDCARE       -318472.75  107959.51  -2.950             0.003231 ** 
   PROX_ELDERLYCARE      185575.62   39901.86   4.651    0.000003613932545 ***
   PROX_URA_GROWTH_AREA   39163.25   11754.83   3.332             0.000885 ***
   PROX_MRT             -294745.11   56916.37  -5.179    0.000000255705220 ***
   PROX_PARK             570504.81   65507.03   8.709 < 0.0000000000000002 ***
   PROX_PRIMARY_SCH      159856.14   60234.60   2.654             0.008046 ** 
   PROX_SHOPPING_MALL   -220947.25   36561.83  -6.043    0.000000001927962 ***
   PROX_BUS_STOP         682482.22  134513.24   5.074    0.000000441637621 ***
   NO_Of_UNITS             -245.48      87.95  -2.791             0.005321 ** 
   FAMILY_FRIENDLY       146307.58   46893.02   3.120             0.001845 ** 
   FREEHOLD              350599.81   48506.48   7.228    0.000000000000798 ***

   ---Significance stars
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
   Residual standard error: 756000 on 1421 degrees of freedom
   Multiple R-squared: 0.6507
   Adjusted R-squared: 0.6472 
   F-statistic: 189.1 on 14 and 1421 DF,  p-value: < 0.00000000000000022 
   ***Extra Diagnostic information
   Residual sum of squares: 812060890958409
   Sigma(hat): 752522.9
   AIC:  42966.76
   AICc:  42967.14
   BIC:  41731.39
   ***********************************************************************
   *          Results of Geographically Weighted Regression              *
   ***********************************************************************

   *********************Model calibration information*********************
   Kernel function: gaussian 
   Adaptive bandwidth: 30 (number of nearest neighbours)
   Regression points: the same locations as observations are used.
   Distance metric: Euclidean distance metric is used.

   ****************Summary of GWR coefficient estimates:******************
                                  Min.        1st Qu.         Median
   Intercept            -134874192.014    -246693.174     779280.345
   AREA_SQM                   3318.817       5628.499       7782.486
   AGE                      -96746.436     -29287.820     -14042.717
   PROX_CBD               -2533033.423    -162556.006     -77241.667
   PROX_CHILDCARE         -1279036.792    -201752.740       8715.804
   PROX_ELDERLYCARE       -1621217.923     -92049.948      61029.215
   PROX_URA_GROWTH_AREA   -7268553.018     -30350.048      45868.678
   PROX_MRT              -43780537.042    -672818.354    -221150.271
   PROX_PARK              -2902027.105    -167820.665     116014.299
   PROX_PRIMARY_SCH        -864176.067    -166266.939      -7785.325
   PROX_SHOPPING_MALL     -1827150.999    -131754.889     -14049.330
   PROX_BUS_STOP          -2057895.720     -71460.777     411041.226
   NO_Of_UNITS               -2199.274       -236.853        -34.699
   FAMILY_FRIENDLY         -598786.697     -50926.596      26172.549
   FREEHOLD                -163402.522      40765.437     190227.133
                               3rd Qu.     Max.
   Intercept               1619360.306 18758355
   AREA_SQM                  12737.761    23064
   AGE                       -5611.856    13303
   PROX_CBD                   2662.370 11346650
   PROX_CHILDCARE           377776.875  2892127
   PROX_ELDERLYCARE         281843.735  2465671
   PROX_URA_GROWTH_AREA     246125.428  7384059
   PROX_MRT                 -74593.417  1186242
   PROX_PARK                465717.595  2588497
   PROX_PRIMARY_SCH         432218.459  3381462
   PROX_SHOPPING_MALL       137986.314 38038564
   PROX_BUS_STOP           1207119.672 12081592
   NO_Of_UNITS                 116.573     1010
   FAMILY_FRIENDLY          224806.072  2072414
   FREEHOLD                 379604.132  1813995
   ************************Diagnostic information*************************
   Number of data points: 1436 
   Effective number of parameters (2trace(S) - trace(S'S)): 350.3088 
   Effective degrees of freedom (n-2trace(S) + trace(S'S)): 1085.691 
   AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): 41982.22 
   AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): 41546.74 
   BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): 41914.08 
   Residual sum of squares: 252822722477010 
   R-square value:  0.8912425 
   Adjusted R-square value:  0.8561185 

   ***********************************************************************
   Program stops at: 2022-12-17 23:51:05 

The report shows that the Adjusted R-square of the gwr is 0.8561 which, again, is significantly better than the global multiple linear regression model of 0.6472.

6.9.3 Decoding the GWR Outputs

In addition to regression residuals, the output feature class table includes fields for observed and predicted y values, condition number (cond), Local R2, residuals, explanatory variable coefficients and standard errors:

  • Condition Number: this diagnostic evaluates local collinearity. In the presence of strong local collinearity, results become unstable. Results associated with condition numbers larger than 30, may be unreliable.

  • Local R2: these values range between 0.0 and 1.0 and indicate how well the local regression model fits observed y values. Very low values indicate the local model is performing poorly. Mapping the Local R2 values to see where GWR predicts well and where it predicts poorly may provide clues about important variables that may be missing in the regression model.

  • Predicted: these are the estimated (or fitted) y values computed by the GWR.

  • Residuals: to obtain the residual values, the fitted y values are subtracted from the observed y values. Standardized residuals have a mean of 0 and a standard deviation of 1. A cold-to-hot rendered map of standardized residuals can be produced by using these values.

  • Coefficient Standard Error: these values measure the reliability of each coefficient estimate. Confidence in those estimates are higher when standard errors are small in relation to the actual coefficient values. Large standard errors may indicate problems with local collinearity.

They are all stored in a SpatialPointsDataFrame or SpatialPolygonsDataFrame object integrated with fit.points, GWR coefficient estimates, y value, predicted values, coefficient standard errors and t-values in its “data” slot in an object called SDF of the output list.

6.9.4 Convert SDF into sf data.frame

To visualise the fields in SDF, we need to first covert it into sf data.frame by using the code chunk below.

condo_resale.sf.adaptive <- st_as_sf(gwr.adaptive$SDF) %>%
  st_transform(crs=3414)
condo_resale.sf.adaptive.svy21 <- st_transform(condo_resale.sf.adaptive, 3414)
condo_resale.sf.adaptive.svy21  
Simple feature collection with 1436 features and 51 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 14940.85 ymin: 24765.67 xmax: 43352.45 ymax: 48382.81
Projected CRS: SVY21 / Singapore TM
First 10 features:
    Intercept  AREA_SQM        AGE  PROX_CBD PROX_CHILDCARE PROX_ELDERLYCARE
1   2050011.7  9561.892  -9514.634 -120681.9      319266.92       -393417.79
2   1633128.2 16576.853 -58185.479 -149434.2      441102.18        325188.74
3   3433608.2 13091.861 -26707.386 -259397.8     -120116.82        535855.81
4    234358.9 20730.601 -93308.988 2426853.7      480825.28        314783.72
5   2285804.9  6722.836 -17608.018 -316835.5       90764.78       -137384.61
6  -3568877.4  6039.581 -26535.592  327306.1     -152531.19       -700392.85
7  -2874842.4 16843.575 -59166.727 -983577.2     -177810.50       -122384.02
8   2038086.0  6905.135 -17681.897 -285076.6       70259.40        -96012.78
9   1718478.4  9580.703 -14401.128  105803.4     -657698.02       -123276.00
10  3457054.0 14072.011 -31579.884 -234895.4       79961.45        548581.04
   PROX_URA_GROWTH_AREA    PROX_MRT  PROX_PARK PROX_PRIMARY_SCH
1            -159980.20  -299742.96 -172104.47        242668.03
2            -142290.39 -2510522.23  523379.72       1106830.66
3            -253621.21  -936853.28  209099.85        571462.33
4           -2679297.89 -2039479.50 -759153.26       3127477.21
5             303714.81   -44567.05  -10284.62         30413.56
6             -28051.25   733566.47 1511488.92        320878.23
7            1397676.38 -2745430.34  710114.74       1786570.95
8             269368.71   -14552.99   73533.34         53359.73
9            -361974.72  -476785.32 -132067.59        -40128.92
10           -150024.38 -1503835.53  574155.47        108996.67
   PROX_SHOPPING_MALL PROX_BUS_STOP  NO_Of_UNITS FAMILY_FRIENDLY  FREEHOLD
1          300881.390     1210615.4  104.8290640       -9075.370  303955.6
2          -87693.378     1843587.2 -288.3441183      310074.664  396221.3
3         -126732.712     1411924.9   -9.5532945        5949.746  168821.7
4          -29593.342     7225577.5 -161.3551620     1556178.531 1212515.6
5           -7490.586      677577.0   42.2659674       58986.951  328175.2
6          258583.881     1086012.6 -214.3671271      201992.641  471873.1
7         -384251.210     5094060.5   -0.9212521      359659.512  408871.9
8          -39634.902      735767.1   30.1741069       55602.506  347075.0
9          276718.757     2815772.4  675.1615559      -30453.297  503872.8
10        -454726.822     2123557.0  -21.3044311     -100935.586  213324.6
         y    yhat    residual CV_Score Stud_residual Intercept_SE AREA_SQM_SE
1  3000000 2886532   113468.16        0    0.38207013     516105.5    823.2860
2  3880000 3466801   413198.52        0    1.01433140     488083.5    825.2380
3  3325000 3616527  -291527.20        0   -0.83780678     963711.4    988.2240
4  4250000 5435482 -1185481.63        0   -2.84614670     444185.5    617.4007
5  1400000 1388166    11834.26        0    0.03404453    2119620.6   1376.2778
6  1320000 1516702  -196701.94        0   -0.72065800   28572883.7   2348.0091
7  3410000 3266881   143118.77        0    0.41291992     679546.6    893.5893
8  1420000 1431955   -11955.27        0   -0.03033109    2217773.1   1415.2604
9  2025000 1832799   192200.83        0    0.52018109     814281.8    943.8434
10 2550000 2223364   326635.53        0    1.10559735    2410252.0   1271.4073
      AGE_SE PROX_CBD_SE PROX_CHILDCARE_SE PROX_ELDERLYCARE_SE
1   5889.782    37411.22          319111.1           120633.34
2   6226.916    23615.06          299705.3            84546.69
3   6510.236    56103.77          349128.5           129687.07
4   6010.511   469337.41          304965.2           127150.69
5   8180.361   410644.47          698720.6           327371.55
6  14601.909  5272846.47         1141599.8          1653002.19
7   8970.629   346164.20          530101.1           148598.71
8   8661.309   438035.69          742532.8           399221.05
9  11791.208    89148.35          704630.7           329683.30
10  9941.980   173532.77          500976.2           281876.74
   PROX_URA_GROWTH_AREA_SE PROX_MRT_SE PROX_PARK_SE PROX_PRIMARY_SCH_SE
1                 56207.39    185181.3     205499.6            152400.7
2                 76956.50    281133.9     229358.7            165150.7
3                 95774.60    275483.7     314124.3            196662.6
4                470762.12    279877.1     227249.4            240878.9
5                474339.56    363830.0     364580.9            249087.7
6               5496627.21    730453.2    1741712.0            683265.5
7                371692.97    375511.9     297400.9            344602.8
8                517977.91    423155.4     440984.4            261251.2
9                153436.22    285325.4     304998.4            278258.5
10               239182.57    571355.7     599131.8            331284.8
   PROX_SHOPPING_MALL_SE PROX_BUS_STOP_SE NO_Of_UNITS_SE FAMILY_FRIENDLY_SE
1               109268.8         600668.6       218.1258           131474.7
2                98906.8         410222.1       208.9410           114989.1
3               119913.3         464156.7       210.9828           146607.2
4               177104.1         562810.8       361.7767           108726.6
5               301032.9         740922.4       299.5034           160663.7
6              2931208.6        1418333.3       602.5571           331727.0
7               249969.5         821236.4       532.1978           129241.2
8               351634.0         775038.4       338.6777           171895.1
9               289872.7         850095.5       439.9037           220223.4
10              265529.7         631399.2       259.0169           189125.5
   FREEHOLD_SE Intercept_TV AREA_SQM_TV     AGE_TV PROX_CBD_TV
1     115954.0    3.9720784   11.614302  -1.615447 -3.22582173
2     130110.0    3.3460017   20.087361  -9.344188 -6.32792021
3     141031.5    3.5629010   13.247868  -4.102368 -4.62353528
4     138239.1    0.5276150   33.577223 -15.524302  5.17080808
5     210641.1    1.0784029    4.884795  -2.152474 -0.77155660
6     374347.3   -0.1249043    2.572214  -1.817269  0.06207388
7     182216.9   -4.2305303   18.849348  -6.595605 -2.84136028
8     216649.4    0.9189786    4.879056  -2.041481 -0.65080678
9     220473.7    2.1104224   10.150733  -1.221345  1.18682383
10    206346.2    1.4343123   11.068059  -3.176418 -1.35360852
   PROX_CHILDCARE_TV PROX_ELDERLYCARE_TV PROX_URA_GROWTH_AREA_TV PROX_MRT_TV
1         1.00048819          -3.2612693            -2.846248368 -1.61864578
2         1.47178634           3.8462625            -1.848971738 -8.92998600
3        -0.34404755           4.1319138            -2.648105057 -3.40075727
4         1.57665606           2.4756745            -5.691404992 -7.28705261
5         0.12990138          -0.4196596             0.640289855 -0.12249416
6        -0.13361179          -0.4237096            -0.005103357  1.00426206
7        -0.33542751          -0.8235874             3.760298131 -7.31116712
8         0.09462126          -0.2405003             0.520038994 -0.03439159
9        -0.93339393          -0.3739225            -2.359121712 -1.67102293
10        0.15961128           1.9461735            -0.627237944 -2.63204802
   PROX_PARK_TV PROX_PRIMARY_SCH_TV PROX_SHOPPING_MALL_TV PROX_BUS_STOP_TV
1   -0.83749312           1.5923022            2.75358842        2.0154464
2    2.28192684           6.7019454           -0.88662640        4.4941192
3    0.66565951           2.9058009           -1.05686949        3.0419145
4   -3.34061770          12.9836105           -0.16709578       12.8383775
5   -0.02820944           0.1220998           -0.02488294        0.9145046
6    0.86781794           0.4696245            0.08821750        0.7656963
7    2.38773567           5.1844351           -1.53719231        6.2029165
8    0.16674816           0.2042469           -0.11271635        0.9493299
9   -0.43301073          -0.1442145            0.95462153        3.3123012
10   0.95831249           0.3290120           -1.71252687        3.3632555
   NO_Of_UNITS_TV FAMILY_FRIENDLY_TV FREEHOLD_TV  Local_R2
1     0.480589953        -0.06902748    2.621347 0.8846744
2    -1.380026395         2.69655779    3.045280 0.8899773
3    -0.045279967         0.04058290    1.197050 0.8947007
4    -0.446007570        14.31276425    8.771149 0.9073605
5     0.141120178         0.36714544    1.557983 0.9510057
6    -0.355762335         0.60891234    1.260522 0.9247586
7    -0.001731033         2.78285441    2.243875 0.8310458
8     0.089093858         0.32346758    1.602012 0.9463936
9     1.534793921        -0.13828365    2.285410 0.8380365
10   -0.082251138        -0.53369623    1.033819 0.9080753
                    geometry
1  POINT (22085.12 29951.54)
2   POINT (25656.84 34546.2)
3   POINT (23963.99 32890.8)
4  POINT (27044.28 32319.77)
5  POINT (41042.56 33743.64)
6   POINT (39717.04 32943.1)
7   POINT (28419.1 33513.37)
8  POINT (40763.57 33879.61)
9  POINT (23595.63 28884.78)
10 POINT (24586.56 33194.31)
gwr.adaptive.output <- as.data.frame(gwr.adaptive$SDF)
condo_resale.sf.adaptive <- cbind(condo_resale.res.sf, as.matrix(gwr.adaptive.output))

Next, we use glimpse() to display the content of condo_resale.sf.adaptive sf data frame.

glimpse(condo_resale.sf.adaptive)
Rows: 1,436
Columns: 77
$ POSTCODE                <dbl> 118635, 288420, 267833, 258380, 467169, 466472…
$ SELLING_PRICE           <dbl> 3000000, 3880000, 3325000, 4250000, 1400000, 1…
$ AREA_SQM                <dbl> 309, 290, 248, 127, 145, 139, 218, 141, 165, 1…
$ AGE                     <dbl> 30, 32, 33, 7, 28, 22, 24, 24, 27, 31, 17, 22,…
$ PROX_CBD                <dbl> 7.941259, 6.609797, 6.898000, 4.038861, 11.783…
$ PROX_CHILDCARE          <dbl> 0.16597932, 0.28027246, 0.42922669, 0.39473543…
$ PROX_ELDERLYCARE        <dbl> 2.5198118, 1.9333338, 0.5021395, 1.9910316, 1.…
$ PROX_URA_GROWTH_AREA    <dbl> 6.618741, 7.505109, 6.463887, 4.906512, 6.4106…
$ PROX_HAWKER_MARKET      <dbl> 1.76542207, 0.54507614, 0.37789301, 1.68259969…
$ PROX_KINDERGARTEN       <dbl> 0.05835552, 0.61592412, 0.14120309, 0.38200076…
$ PROX_MRT                <dbl> 0.5607188, 0.6584461, 0.3053433, 0.6910183, 0.…
$ PROX_PARK               <dbl> 1.1710446, 0.1992269, 0.2779886, 0.9832843, 0.…
$ PROX_PRIMARY_SCH        <dbl> 1.6340256, 0.9747834, 1.4715016, 1.4546324, 0.…
$ PROX_TOP_PRIMARY_SCH    <dbl> 3.3273195, 0.9747834, 1.4715016, 2.3006394, 0.…
$ PROX_SHOPPING_MALL      <dbl> 2.2102717, 2.9374279, 1.2256850, 0.3525671, 1.…
$ PROX_SUPERMARKET        <dbl> 0.9103958, 0.5900617, 0.4135583, 0.4162219, 0.…
$ PROX_BUS_STOP           <dbl> 0.10336166, 0.28673408, 0.28504777, 0.29872340…
$ NO_Of_UNITS             <dbl> 18, 20, 27, 30, 30, 31, 32, 32, 32, 32, 34, 34…
$ FAMILY_FRIENDLY         <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0…
$ FREEHOLD                <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1…
$ LEASEHOLD_99YR          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ LOG_SELLING_PRICE       <dbl> 14.91412, 15.17135, 15.01698, 15.26243, 14.151…
$ MLR_RES                 <dbl> -1489099.55, 415494.57, 194129.69, 1088992.71,…
$ Intercept               <dbl> 2050011.67, 1633128.24, 3433608.17, 234358.91,…
$ AREA_SQM.1              <dbl> 9561.892, 16576.853, 13091.861, 20730.601, 672…
$ AGE.1                   <dbl> -9514.634, -58185.479, -26707.386, -93308.988,…
$ PROX_CBD.1              <dbl> -120681.94, -149434.22, -259397.77, 2426853.66…
$ PROX_CHILDCARE.1        <dbl> 319266.925, 441102.177, -120116.816, 480825.28…
$ PROX_ELDERLYCARE.1      <dbl> -393417.795, 325188.741, 535855.806, 314783.72…
$ PROX_URA_GROWTH_AREA.1  <dbl> -159980.203, -142290.389, -253621.206, -267929…
$ PROX_MRT.1              <dbl> -299742.96, -2510522.23, -936853.28, -2039479.…
$ PROX_PARK.1             <dbl> -172104.47, 523379.72, 209099.85, -759153.26, …
$ PROX_PRIMARY_SCH.1      <dbl> 242668.03, 1106830.66, 571462.33, 3127477.21, …
$ PROX_SHOPPING_MALL.1    <dbl> 300881.390, -87693.378, -126732.712, -29593.34…
$ PROX_BUS_STOP.1         <dbl> 1210615.44, 1843587.22, 1411924.90, 7225577.51…
$ NO_Of_UNITS.1           <dbl> 104.8290640, -288.3441183, -9.5532945, -161.35…
$ FAMILY_FRIENDLY.1       <dbl> -9075.370, 310074.664, 5949.746, 1556178.531, …
$ FREEHOLD.1              <dbl> 303955.61, 396221.27, 168821.75, 1212515.58, 3…
$ y                       <dbl> 3000000, 3880000, 3325000, 4250000, 1400000, 1…
$ yhat                    <dbl> 2886531.8, 3466801.5, 3616527.2, 5435481.6, 13…
$ residual                <dbl> 113468.16, 413198.52, -291527.20, -1185481.63,…
$ CV_Score                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Stud_residual           <dbl> 0.38207013, 1.01433140, -0.83780678, -2.846146…
$ Intercept_SE            <dbl> 516105.5, 488083.5, 963711.4, 444185.5, 211962…
$ AREA_SQM_SE             <dbl> 823.2860, 825.2380, 988.2240, 617.4007, 1376.2…
$ AGE_SE                  <dbl> 5889.782, 6226.916, 6510.236, 6010.511, 8180.3…
$ PROX_CBD_SE             <dbl> 37411.22, 23615.06, 56103.77, 469337.41, 41064…
$ PROX_CHILDCARE_SE       <dbl> 319111.1, 299705.3, 349128.5, 304965.2, 698720…
$ PROX_ELDERLYCARE_SE     <dbl> 120633.34, 84546.69, 129687.07, 127150.69, 327…
$ PROX_URA_GROWTH_AREA_SE <dbl> 56207.39, 76956.50, 95774.60, 470762.12, 47433…
$ PROX_MRT_SE             <dbl> 185181.3, 281133.9, 275483.7, 279877.1, 363830…
$ PROX_PARK_SE            <dbl> 205499.6, 229358.7, 314124.3, 227249.4, 364580…
$ PROX_PRIMARY_SCH_SE     <dbl> 152400.7, 165150.7, 196662.6, 240878.9, 249087…
$ PROX_SHOPPING_MALL_SE   <dbl> 109268.8, 98906.8, 119913.3, 177104.1, 301032.…
$ PROX_BUS_STOP_SE        <dbl> 600668.6, 410222.1, 464156.7, 562810.8, 740922…
$ NO_Of_UNITS_SE          <dbl> 218.1258, 208.9410, 210.9828, 361.7767, 299.50…
$ FAMILY_FRIENDLY_SE      <dbl> 131474.73, 114989.07, 146607.22, 108726.62, 16…
$ FREEHOLD_SE             <dbl> 115954.0, 130110.0, 141031.5, 138239.1, 210641…
$ Intercept_TV            <dbl> 3.9720784, 3.3460017, 3.5629010, 0.5276150, 1.…
$ AREA_SQM_TV             <dbl> 11.614302, 20.087361, 13.247868, 33.577223, 4.…
$ AGE_TV                  <dbl> -1.6154474, -9.3441881, -4.1023685, -15.524301…
$ PROX_CBD_TV             <dbl> -3.22582173, -6.32792021, -4.62353528, 5.17080…
$ PROX_CHILDCARE_TV       <dbl> 1.000488185, 1.471786337, -0.344047555, 1.5766…
$ PROX_ELDERLYCARE_TV     <dbl> -3.26126929, 3.84626245, 4.13191383, 2.4756745…
$ PROX_URA_GROWTH_AREA_TV <dbl> -2.846248368, -1.848971738, -2.648105057, -5.6…
$ PROX_MRT_TV             <dbl> -1.61864578, -8.92998600, -3.40075727, -7.2870…
$ PROX_PARK_TV            <dbl> -0.83749312, 2.28192684, 0.66565951, -3.340617…
$ PROX_PRIMARY_SCH_TV     <dbl> 1.59230221, 6.70194543, 2.90580089, 12.9836104…
$ PROX_SHOPPING_MALL_TV   <dbl> 2.753588422, -0.886626400, -1.056869486, -0.16…
$ PROX_BUS_STOP_TV        <dbl> 2.0154464, 4.4941192, 3.0419145, 12.8383775, 0…
$ NO_Of_UNITS_TV          <dbl> 0.480589953, -1.380026395, -0.045279967, -0.44…
$ FAMILY_FRIENDLY_TV      <dbl> -0.06902748, 2.69655779, 0.04058290, 14.312764…
$ FREEHOLD_TV             <dbl> 2.6213469, 3.0452799, 1.1970499, 8.7711485, 1.…
$ Local_R2                <dbl> 0.8846744, 0.8899773, 0.8947007, 0.9073605, 0.…
$ coords.x1               <dbl> 22085.12, 25656.84, 23963.99, 27044.28, 41042.…
$ coords.x2               <dbl> 29951.54, 34546.20, 32890.80, 32319.77, 33743.…
$ geometry                <POINT [m]> POINT (22085.12 29951.54), POINT (25656.…

The predicted Selling Price for the transaction is summarised as follow:

summary(gwr.adaptive$SDF$yhat)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
  171347  1102001  1385528  1751842  1982307 13887901 

6.9.5 Visualise Local R2

The code chunks below is used to create an interactive point symbol map.

tmap_mode("view")

tm_shape(mpsz_svy21)+
  tm_polygons(alpha = 0.1) +
  tm_shape(condo_resale.sf.adaptive) +  
  tm_dots(col = "Local_R2",
          border.col = "gray60",
          border.lwd = 1) +
  tm_view(set.zoom.limits = c(11,14))

We then turn off interactive view.

tmap_mode("plot")

6.9.5.1 Visualise the Local R2 by URA Planning Region

We can print the maps with Local R2 values by Planning Region

planning_region <- c("CENTRAL REGION","WEST REGION","EAST REGION","NORTH-EAST REGION", "NORTH REGION")

for (region in planning_region){
  print(tm_shape(mpsz_svy21[mpsz_svy21$REGION_N==region, ])+
    tm_polygons()+
    tm_shape(condo_resale.sf.adaptive) + 
    tm_bubbles(col = "Local_R2",
             size = 0.15,
             border.col = "gray60",
             border.lwd = 1) +
    tm_layout(main.title = paste("Local R2 for", region),
            main.title.position = "center",
            main.title.size = 1.0)
  )
  }

6.9.6 Visualise coefficient estimates

The code chunks below is used to create an interactive point symbol map.

# Switch to interactive plot
tmap_mode("view")

# Plot the coefficient estimates
AREA_SQM_SE <- tm_shape(mpsz_svy21)+
  tm_polygons(alpha = 0.1) +
tm_shape(condo_resale.sf.adaptive) +  
  tm_dots(col = "AREA_SQM_SE",
          border.col = "gray60",
          border.lwd = 1) +
  tm_view(set.zoom.limits = c(11,14))

AREA_SQM_TV <- tm_shape(mpsz_svy21)+
  tm_polygons(alpha = 0.1) +
tm_shape(condo_resale.sf.adaptive) +  
  tm_dots(col = "AREA_SQM_TV",
          border.col = "gray60",
          border.lwd = 1) +
  tm_view(set.zoom.limits = c(11,14))

tmap_arrange(AREA_SQM_SE, AREA_SQM_TV, 
             asp=1, ncol=1, nrow = 2,
             sync = TRUE)

Switch back to view mode

tmap_mode("plot")

6.10 Reference

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) “GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models”. Journal of Statistical Software, 63(17):1-50, http://www.jstatsoft.org/v63/i17/

Lu B, Harris P, Charlton M, Brunsdon C (2014) “The GWmodel R Package: further topics for exploring Spatial Heterogeneity using GeographicallyWeighted Models”. Geo-spatial Information Science 17(2): 85-101, http://www.tandfonline.com/doi/abs/10.1080/1009502.2014.917453

Dr. Kam TIn Seong (2022) , “ISSS602 Data Analytics Lab Lesson 5: The Granddaddy of All Models: Regression Analysis” Version 2.14.0